Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Medicine (Baltimore) ; 102(20): e33821, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-20245357

ABSTRACT

To investigate the potential role of COVID-19 in relation to Behcet's disease (BD) and to search for relevant biomarkers. We used a bioinformatics approach to download transcriptomic data from peripheral blood mononuclear cells (PBMCs) of COVID-19 patients and PBMCs of BD patients, screened the common differential genes between COVID-19 and BD, performed gene ontology (GO) and pathway analysis, and constructed the protein-protein interaction (PPI) network, screened the hub genes and performed co-expression analysis. In addition, we constructed the genes-transcription factors (TFs)-miRNAs network, the genes-diseases network and the genes-drugs network to gain insight into the interactions between the 2 diseases. We used the RNA-seq dataset from the GEO database (GSE152418, GSE198533). We used cross-analysis to obtain 461 up-regulated common differential genes and 509 down-regulated common differential genes, mapped the PPI network, and used Cytohubba to identify the 15 most strongly associated genes as hub genes (ACTB, BRCA1, RHOA, CCNB1, ASPM, CCNA2, TOP2A, PCNA, AURKA, KIF20A, MAD2L1, MCM4, BUB1, RFC4, and CENPE). We screened for statistically significant hub genes and found that ACTB was in low expression of both BD and COVID-19, and ASPM, CCNA2, CCNB1, and CENPE were in low expression of BD and high expression of COVID-19. GO analysis and pathway analysis was then performed to obtain common pathways and biological response processes, which suggested a common association between BD and COVID-19. The genes-TFs-miRNAs network, genes-diseases network and genes-drugs network also play important roles in the interaction between the 2 diseases. Interaction between COVID-19 and BD exists. ACTB, ASPM, CCNA2, CCNB1, and CENPE as potential biomarkers for 2 diseases.


Subject(s)
Behcet Syndrome , COVID-19 , MicroRNAs , Humans , Transcriptome , Behcet Syndrome/genetics , Leukocytes, Mononuclear , COVID-19/genetics , Gene Expression Profiling , Gene Regulatory Networks , Nerve Tissue Proteins/genetics , Computational Biology , Gene Expression Regulation, Neoplastic
2.
Comput Biol Med ; 158: 106855, 2023 05.
Article in English | MEDLINE | ID: covidwho-2305023

ABSTRACT

The molecular mechanism of the pathological impact of COVID-19 in lung cancer patients remains poorly understood to date. In this study, we used differential gene expression pattern analysis to try to figure out the possible disease mechanism of COVID-19 and its associated risk factors in patients with the two most common types of non-small-cell lung cancer, namely, lung adenocarcinoma and lung squamous cell carcinoma. We also used network-based approaches to identify potential diagnostic and molecular targets for COVID-19-infected lung cancer patients. Our study showed that lung cancer and COVID-19 patients share 36 genes that are expressed differently and in common. Most of these genes are expressed in lung tissues and are mostly involved in the pathogenesis of different respiratory tract diseases. Additionally, we also found that COVID-19 may affect the expression of several cancer-associated genes in lung cancer patients, such as the oncogenes JUN, TNC, and POU2AF1. Moreover, our findings suggest that COVID-19 may predispose lung cancer patients to other diseases like acute liver failure and respiratory distress syndrome. Additionally, our findings, in concert with published literature, suggest that molecular signatures, such as hsa-mir-93-5p, CCNB2, IRF1, CD163, and different immune cell-based approaches could help both diagnose and treat this group of patients. Altogether, the scientific findings of this study will help formulate appropriate management measures and guide the development of diagnostic and therapeutic measures for COVID-19-infected lung cancer patients.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , COVID-19 , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , MicroRNAs , Pneumonia , Humans , Lung Neoplasms/complications , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , COVID-19/genetics , MicroRNAs/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Adenocarcinoma/genetics , Adenocarcinoma of Lung/genetics , Risk Factors , Gene Expression Regulation, Neoplastic/genetics , Lung
3.
Pathol Oncol Res ; 27: 588532, 2021.
Article in English | MEDLINE | ID: covidwho-2288595

ABSTRACT

Background and Objective: Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor of the digestive system worldwide. Chronic hepatitis B virus (HBV) infection and aflatoxin exposure are predominant causes of HCC in China, whereas hepatitis C virus (HCV) infection and alcohol intake are likely the main risk factors in other countries. It is an unmet need to recognize the underlying molecular mechanisms of HCC in China. Methods: In this study, microarray datasets (GSE84005, GSE84402, GSE101685, and GSE115018) derived from Gene Expression Omnibus (GEO) database were analyzed to obtain the common differentially expressed genes (DEGs) by R software. Moreover, the gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by using Database for Annotation, Visualization and Integrated Discovery (DAVID). Furthermore, the protein-protein interaction (PPI) network was constructed, and hub genes were identified by the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape, respectively. The hub genes were verified using Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, and Kaplan-Meier Plotter online databases were performed on the TCGA HCC dataset. Moreover, the Human Protein Atlas (HPA) database was used to verify candidate genes' protein expression levels. Results: A total of 293 common DEGs were screened, including 103 up-regulated genes and 190 down-regulated genes. Moreover, GO analysis implied that common DEGs were mainly involved in the oxidation-reduction process, cytosol, and protein binding. KEGG pathway enrichment analysis presented that common DEGs were mainly enriched in metabolic pathways, complement and coagulation cascades, cell cycle, p53 signaling pathway, and tryptophan metabolism. In the PPI network, three subnetworks with high scores were detected using the Molecular Complex Detection (MCODE) plugin. The top 10 hub genes identified were CDK1, CCNB1, AURKA, CCNA2, KIF11, BUB1B, TOP2A, TPX2, HMMR and CDC45. The other public databases confirmed that high expression of the aforementioned genes related to poor overall survival among patients with HCC. Conclusion: This study primarily identified candidate genes and pathways involved in the underlying mechanisms of Chinese HCC, which is supposed to provide new targets for the diagnosis and treatment of HCC in China.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/pathology , Cell Cycle/genetics , China/epidemiology , Computational Biology , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Liver Neoplasms/epidemiology , Liver Neoplasms/pathology , Prognosis , Protein Interaction Maps , Signal Transduction/genetics
4.
J Contemp Dent Pract ; 23(10): 963-964, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2277635

ABSTRACT

This study explores the downregulation of Dual Specificity Phosphatase-1 (DUSP-1) expression in oral cancer progression during the pandemic and post-pandemic situations. Keywords: COVID-19, Dual specificity phosphatase-1, Oral cancer, SARS-CoV-2.


Subject(s)
COVID-19 , Dual Specificity Phosphatase 1 , Mouth Neoplasms , Humans , Mouth Neoplasms/epidemiology , Neoplastic Processes , SARS-CoV-2 , Dual Specificity Phosphatase 1/genetics , Disease Progression , Gene Expression Regulation, Neoplastic
5.
BMC Neurol ; 22(1): 139, 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-2268723

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is the most common aggressive malignant brain tumor. However, the molecular mechanism of glioblastoma formation is still poorly understood. To identify candidate genes that may be connected to glioma growth and development, weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network between gene sets and clinical characteristics. We also explored the function of the key candidate gene. METHODS: Two GBM datasets were selected from GEO Datasets. The R language was used to identify differentially expressed genes. WGCNA was performed to construct a gene co-expression network in the GEO glioblastoma samples. A custom Venn diagram website was used to find the intersecting genes. The GEPIA website was applied for survival analysis to determine the significant gene, FUBP3. OS, DSS, and PFI analyses, based on the UCSC Cancer Genomics Browser, were performed to verify the significance of FUBP3. Immunohistochemistry was performed to evaluate the expression of FUBP3 in glioblastoma and adjacent normal tissue. KEGG and GO enrichment analyses were used to reveal possible functions of FUBP3. Microenvironment analysis was used to explore the relationship between FUBP3 and immune infiltration. Immunohistochemistry was performed to verify the results of the microenvironment analysis. RESULTS: GSE70231 and GSE108474 were selected from GEO Datasets, then 715 and 694 differentially expressed genes (DEGs) from GSE70231 and GSE108474, respectively, were identified. We then performed weighted gene co-expression network analysis (WGCNA) and identified the most downregulated gene modules of GSE70231 and GSE108474, and 659 and 3915 module genes from GSE70231 and GSE108474, respectively, were selected. Five intersection genes (FUBP3, DAD1, CLIC1, ABR, and DNM1) were calculated by Venn diagram. FUBP3 was then identified as the only significant gene by survival analysis using the GEPIA website. OS, DSS, and PFI analyses verified the significance of FUBP3. Immunohistochemical analysis revealed FUBP3 expression in GBM and adjacent normal tissue. KEGG and GO analyses uncovered the possible function of FUBP3 in GBM. Tumor microenvironment analysis showed that FUBP3 may be connected to immune infiltration, and immunohistochemistry identified a positive correlation between immune cells (CD4 + T cells, CD8 + T cells, and macrophages) and FUBP3. CONCLUSION: FUBP3 is associated with immune surveillance in GBM, indicating that it has a great impact on GBM development and progression. Therefore, interventions involving FUBP3 and its regulatory pathway may be a new approach for GBM treatment.


Subject(s)
Glioblastoma , Biomarkers, Tumor , Chloride Channels/genetics , Computational Biology/methods , DNA-Binding Proteins/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Humans , Prognosis , Transcription Factors/genetics , Tumor Microenvironment
6.
Ren Fail ; 44(1): 204-216, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2256901

ABSTRACT

The antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systematic of relatively rare autoimmune diseases with unknown cause. Kidney involvement is one of the most common clinical manifestations, and the degree of renal damage is closely associated with the development and prognosis of AAV. In this study, we utilized the Robust Rank Aggreg (RRA) method in R to integrate GSE104948, GSE104954, GSE108109, GSE108112, and GSE108113 profile datasets loaded from Gene Expression Omnibus (GEO) database and identified a set of differentially expressed genes (DEGs) in kidney between AAV patients and living donors. Then, the results of gene ontology (GO) functional annotation showed that immunity and metabolism involved process of AAV both in glomerulus and tubulointerstitial. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that following pathways, such as complement and coagulation cascades pathway; Staphylococcus aureus infection; disease-COVID-19; and systemic lupus erythematosus (SLE) pathway play a crucial role in AAV. Next, the results analyzed by protein-protein interaction (PPI) network and Cytoscape software exhibited the hub genes ALB, TYROBP, and CYBB existed in both glomerular and tubulointerstitial compartments datasets. Finally, KEGG analysis using genes of two most important modules also further validated complement and coagulation cascades pathway and S. aureus infection existed both in glomerulus and tubulointerstitial compartments datasets. In conclusion, this study identified key genes and pathways involved in kidney of AAV, which was benefit to further uncover the mechanisms underlying the development and progress of AAV, biomarkers, and potential therapeutic targets as well.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Computational Biology/methods , Gene Expression Regulation, Neoplastic , Kidney/pathology , Protein Interaction Maps/genetics , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , Biomarkers, Tumor/genetics , Gene Expression Profiling , Gene Regulatory Networks , Humans , Prognosis , Software
7.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2227435

ABSTRACT

Glioblastoma (GBM) is a type of brain cancer that is typically very aggressive and difficult to treat. Glioblastoma cases have been reported to have increased during COVID-19. The mechanisms underlying this comorbidity, including genomic interactions, tumor differentiation, immune responses, and host defense, are not completely explained. Therefore, we intended to investigate the differentially expressed shared genes and therapeutic agents which are significant for these conditions by using in silico approaches. Gene expression datasets of GSE68848, GSE169158, and GSE4290 studies were collected and analyzed to identify the DEGs between the diseased and the control samples. Then, the ontology of the genes and the metabolic pathway enrichment analysis were carried out for the classified samples based on expression values. Protein-protein interactions (PPI) map were performed by STRING and fine-tuned by Cytoscape to screen the enriched gene module. In addition, the connectivity map was used for the prediction of potential drugs. As a result, 154 overexpressed and 234 under-expressed genes were identified as common DEGs. These genes were found to be significantly enriched in the pathways involved in viral diseases, NOD-like receptor signaling pathway, the cGMP-PKG signaling pathway, growth hormone synthesis, secretion, and action, the immune system, interferon signaling, and the neuronal system. STAT1, CXCL10, and SAMDL were screened out as the top 03 out of the top 10 most critical genes among the DEGs from the PPI network. AZD-8055, methotrexate, and ruxolitinib were predicted to be the possible agents for the treatment. The current study identified significant key genes, common metabolic signaling networks, and therapeutic agents to improve our perception of the common mechanisms of GBM-COVID-19.


Subject(s)
COVID-19 , Gene Expression Profiling , Glioblastoma , Humans , Computational Biology , COVID-19/diagnosis , COVID-19/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/complications , Glioblastoma/drug therapy , Glioblastoma/metabolism , Protein Interaction Maps/genetics , Prognosis
8.
Biomed Res Int ; 2023: 2152432, 2023.
Article in English | MEDLINE | ID: covidwho-2223810

ABSTRACT

Objective: To analyze and identify the core genes related to the expression and prognosis of lung cancer including lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) by bioinformatics technology, with the aim of providing a reference for clinical treatment. Methods: Five sets of gene chips, GSE7670, GSE151102, GSE33532, GSE43458, and GSE19804, were obtained from the Gene Expression Omnibus (GEO) database. After using GEO2R to analyze the differentially expressed genes (DEGs) between lung cancer and normal tissues online, the common DEGs of the five sets of chips were obtained using a Venn online tool and imported into the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database for Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The protein-protein interaction (PPI) network was constructed by STRING online software for further study, and the core genes were determined by Cytoscape software and KEGG pathway enrichment analysis. The clustering heat map was drawn by Excel software to verify its accuracy. In addition, we used the University of Alabama at Birmingham Cancer (UALCAN) website to analyze the expression of core genes in P53 mutation status, confirmed the expression of crucial core genes in lung cancer tissues with Gene Expression Profiling Interactive Analysis (GEPIA) and GEPIA2 online software, and evaluated their prognostic value in lung cancer patients with the Kaplan-Meier online plotter tool. Results: CHEK1, CCNB1, CCNB2, and CDK1 were selected. The expression levels of these four genes in lung cancer tissues were significantly higher than those in normal tissues. Their increased expression was negatively correlated with lung cancer patients (including LUAD and LUSC) prognosis and survival rate. Conclusion: CHEK1, CCNB1, CCNB2, and CDK1 are the critical core genes of lung cancer and are highly expressed in lung cancer. They are negatively correlated with the prognosis of lung cancer patients (including LUAD and LUSC) and closely related to the formation and prediction of lung cancer. They are valuable predictors and may be predictive biomarkers of lung cancer.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Prognosis , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Computational Biology , Gene Expression Regulation, Neoplastic/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
9.
Comput Math Methods Med ; 2022: 9914927, 2022.
Article in English | MEDLINE | ID: covidwho-2020562

ABSTRACT

Introduction: Novel coronavirus pneumonia (COVID-19) is an acute respiratory disease caused by the novel coronavirus SARS-CoV-2. Severe and critical illness, especially secondary bacterial infection (SBI) cases, accounts for the vast majority of COVID-19-related deaths. However, the relevant biological indicators of COVID-19 and SBI are still unclear, which significantly limits the timely diagnosis and treatment. Methods: The differentially expressed genes (DEGs) between severe COVID-19 patients with SBI and without SBI were screened through the analysis of GSE168017 and GSE168018 datasets. By performing Gene Ontology (GO) enrichment analysis for significant DEGs, significant biological processes, cellular components, and molecular functions were selected. To understand the high-level functions and utilities of the biological system, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed. By analyzing protein-protein interaction (PPI) and key subnetworks, the core DEGs were found. Results: 85 DEGs were upregulated, and 436 DEGs were downregulated. The CD14 expression was significantly increased in the SBI group of severe COVID-19 patients (P < 0.01). The area under the curve (AUC) of CD14 in the SBI group in severe COVID-19 patients was 0.9429. The presepsin expression was significantly higher in moderate to severe COVID-19 patients (P < 0.05). Presepsin has a diagnostic value for moderate to severe COVID-19 with the AUC of 0.9732. The presepsin expression of COVID-19 patients in the nonsurvivors was significantly higher than that in the survivors (P < 0.05). Conclusion: Presepsin predicts severity and SBI in COVID-19 and may be associated with prognosis in COVID-19.


Subject(s)
Bacterial Infections , COVID-19 , Computational Biology , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Lipopolysaccharide Receptors/genetics , Peptide Fragments/genetics , SARS-CoV-2 , Signal Transduction/genetics
10.
11.
PLoS One ; 17(6): e0269386, 2022.
Article in English | MEDLINE | ID: covidwho-1910661

ABSTRACT

BACKGROUND: There is growing evidence of a strong relationship between COVID-19 and myocarditis. However, there are few bioinformatics-based analyses of critical genes and the mechanisms related to COVID-19 Myocarditis. This study aimed to identify critical genes related to COVID-19 Myocarditis by bioinformatic methods, explore the biological mechanisms and gene regulatory networks, and probe related drugs. METHODS: The gene expression data of GSE150392 and GSE167028 were obtained from the Gene Expression Omnibus (GEO), including cardiomyocytes derived from human induced pluripotent stem cells infected with SARS-CoV-2 in vitro and GSE150392 from patients with myocarditis infected with SARS-CoV-2 and the GSE167028 gene expression dataset. Differentially expressed genes (DEGs) (adjusted P-Value <0.01 and |Log2 Fold Change| ≥2) in GSE150392 were assessed by NetworkAnalyst 3.0. Meanwhile, significant modular genes in GSE167028 were identified by weighted gene correlation network analysis (WGCNA) and overlapped with DEGs to obtain common genes. Functional enrichment analyses were performed by using the "clusterProfiler" package in the R software, and protein-protein interaction (PPI) networks were constructed on the STRING website (https://cn.string-db.org/). Critical genes were identified by the CytoHubba plugin of Cytoscape by 5 algorithms. Transcription factor-gene (TF-gene) and Transcription factor-microRibonucleic acid (TF-miRNA) coregulatory networks construction were performed by NetworkAnalyst 3.0 and displayed in Cytoscape. Finally, Drug Signatures Database (DSigDB) was used to probe drugs associated with COVID-19 Myocarditis. RESULTS: Totally 850 DEGs (including 449 up-regulated and 401 down-regulated genes) and 159 significant genes in turquoise modules were identified from GSE150392 and GSE167028, respectively. Functional enrichment analysis indicated that common genes were mainly enriched in biological processes such as cell cycle and ubiquitin-protein hydrolysis. 6 genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) were identified as critical genes. TF-gene interactions and TF-miRNA coregulatory network were constructed successfully. A total of 10 drugs, (such as Etoposide, Methotrexate, Troglitazone, etc) were considered as target drugs for COVID-19 Myocarditis. CONCLUSIONS: Through bioinformatics method analysis, this study provides a new perspective to explore the pathogenesis, gene regulatory networks and provide drug compounds as a reference for COVID-19 Myocarditis. It is worth highlighting that critical genes (CDK1, KIF20A, PBK, KIF2C, CDC20, UBE2C) may be potential biomarkers and treatment targets of COVID-19 Myocarditis for future study.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , MicroRNAs , Myocarditis , COVID-19/genetics , Computational Biology/methods , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/genetics , Myocarditis/genetics , Protein Interaction Maps/genetics , SARS-CoV-2/genetics , Transcription Factors/metabolism
12.
BMC Cancer ; 22(1): 687, 2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-1902364

ABSTRACT

BACKGROUND: Patients with lung adenocarcinoma (LUAD) may be more predisposed to coronavirus disease 2019 (COVID-19) and have a poorer prognosis. Currently, there is still a lack of effective anti-LUAD/COVID-19 drugs. Thus, this study aimed to screen for an effective anti-LUAD/COVID-19 drug and explore the potential mechanisms. METHODS: Firstly, we performed differentially expressed gene (DEG) analysis on LUAD transcriptome profiling data in The Cancer Genome Atlas (TCGA), where intersections with COVID-19-related genes were screened out. Then, we conducted Cox proportional hazards analyses on these LUAD/COVID-19 DEGs to construct a risk score. Next, LUAD/COVID-19 DEGs were uploaded on Connectivity Map to obtain drugs for anti-LUAD/COVID-19. Finally, we used network pharmacology, molecular docking, and molecular dynamics (MD) simulation to explore the drug's therapeutic targets and potential mechanisms for anti-LUAD/COVID-19. RESULTS: We identified 230 LUAD/COVID-19 DEGs and constructed a risk score containing 7 genes (BTK, CCL20, FURIN, LDHA, TRPA1, ZIC5, and SDK1) that could classify LUAD patients into two risk groups. Then, we screened emetine as an effective drug for anti-LUAD/COVID-19. Network pharmacology analyses identified 6 potential targets (IL6, DPP4, MIF, PRF1, SERPING1, and SLC6A4) for emetine in anti-LUAD/COVID-19. Molecular docking and MD simulation analyses showed that emetine exhibited excellent binding capacities to DDP4 and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CONCLUSIONS: This study found that emetine may inhibit the entry and replication of SARS-CoV-2 and enhance tumor immunity by bounding to DDP4 and Mpro.


Subject(s)
Adenocarcinoma of Lung , COVID-19 Drug Treatment , Emetine , Lung Neoplasms , SARS-CoV-2 , Adenocarcinoma of Lung/complications , Adenocarcinoma of Lung/drug therapy , Computational Biology , DNA-Binding Proteins/genetics , Emetine/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/complications , Lung Neoplasms/drug therapy , Molecular Docking Simulation , SARS-CoV-2/drug effects , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Transcription Factors/genetics
13.
Dis Markers ; 2022: 8602068, 2022.
Article in English | MEDLINE | ID: covidwho-1896084

ABSTRACT

Glioblastoma multiforme (GBM) is a prevalent intracranial brain tumor associated with a high rate of recurrence and treatment difficulty. The prediction of novel molecular biomarkers through bioinformatics analysis may provide new clues into early detection and eventual treatment of GBM. Here, we used data from the GTEx and TCGA databases to identify 1923 differentially expressed genes (DEGs). GO and KEGG analyses indicated that DEGs were significantly enriched in immune response and coronavirus disease-COVID-19 pathways. Survival analyses revealed a significant correlation between high expression of C1R, CCL2, and TNFRSF1A in the coronavirus disease-COVID-19 pathway and the poor survival in GBM patients. Cell experiments indicated that the mRNA expression levels of C1R, CCL2, and TNFRSF1A in GBM cells were very high. Immune infiltration analysis revealed a significant difference in the proportion of immune cells in tumor and normal tissue, and the expression levels of C1R, CCL2, and TNFRSF1A were associated with immune cell infiltration of GBM. Additionally, the protein-protein interaction networks of C1R, CCL2, and TNFRSF1A involved a total of 65 nodes and 615 edges. These results suggest that C1R, CCL2, and TNFRSF1A may be used as molecular biomarkers of prognosis and immune infiltration in GBM patients in the future.


Subject(s)
Brain Neoplasms , COVID-19 , Chemokine CCL2 , Complement C1r , Glioblastoma , Receptors, Tumor Necrosis Factor, Type I , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , COVID-19/genetics , Chemokine CCL2/genetics , Complement C1r/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma/diagnosis , Glioblastoma/pathology , Humans , Prognosis , Receptors, Tumor Necrosis Factor, Type I/genetics
15.
J Clin Lab Anal ; 36(7): e24495, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1877609

ABSTRACT

BACKGROUND: After encountering COVID-19 patients who test positive again after discharge, our study analyzed the pathogenesis to further assess the risk and possibility of virus reactivation. METHODS: A separate microarray was acquired from the Gene Expression Omnibus (GEO), and its samples were divided into two groups: a "convalescent-RTP" group consisting of convalescent and "retesting positive" (RTP) patients (group CR) and a "healthy-RTP" group consisting of healthy control and RTP patients (group HR). The enrichment analysis was performed with R software, obtaining the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the protein-protein interaction (PPI) networks of each group were established, and the hub genes were discovered using the cytoHubba plugin. RESULTS: In this study, 6622 differentially expressed genes were identified in the group CR, among which RAB11B-AS1, DISP1, MICAL3, PSMG1, and DOCK4 were up-regulated genes, and ANAPC1, IGLV1-40, SORT1, PLPPR2, and ATP1A1-AS1 were down-regulated. 7335 genes were screened in the group HR, including the top 5 up-regulated genes ALKBH6, AMBRA1, MIR1249, TRAV18, and LRRC69, and the top 5 down-regulated genes FAM241B, AC018529.3, AL031963.3, AC006946.1, and FAM149B1. The GO and KEGG analysis of the two groups revealed a significant enrichment in immune response and apoptosis. In the PPI network constructed, group CR and group HR identified 10 genes, respectively, and TP53BP1, SNRPD1, and SNRPD2 were selected as hub genes. CONCLUSIONS: Using the messenger ribonucleic acid (mRNA) expression data from GSE166253, we found TP53BP1, SNRPD1, and SNRPD2 as hub genes in RTP patients, which is vital to the management and prognostic prediction of RTP patients.


Subject(s)
COVID-19 , Computational Biology , COVID-19/diagnosis , COVID-19/genetics , COVID-19 Testing , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/genetics , Humans , Patient Discharge , Recurrence
16.
Int J Mol Sci ; 23(6)2022 Mar 19.
Article in English | MEDLINE | ID: covidwho-1760653

ABSTRACT

Lung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells' (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Gene Expression Regulation, Neoplastic , Humans , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/metabolism
17.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1742493

ABSTRACT

Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.


Subject(s)
Bone Neoplasms/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Organoids/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Androgens/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Benzamides/pharmacology , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transplantation, Heterologous , Virus Internalization
18.
Chem Biol Interact ; 353: 109796, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1611644

ABSTRACT

Coronavirus disease 2019 (COVID-19) was declared a serious global public health emergency. Hospitalization and mortality rates of lung cancer patients diagnosed with COVID-19 are higher than those of patients presenting with other cancers. However, the reasons for the outcomes being disproportionately severe in lung adenocarcinoma (LUAD) patients with COVID-19 remain elusive. The present study aimed to identify the possible causes for disproportionately severe COVID-19 outcomes in LUAD patients and determine a therapeutic target for COVID-19 patients with LUAD. We used publicly available data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and various bioinformatics tools to identify and analyze the genes implicated in SARS-CoV-2 infection in LUAD patients. Upregulation of the SARS-CoV-2 infection-related molecules dipeptidyl peptidase 4, basigin, cathepsin B (CTSB), methylenetetrahydrofolate dehydrogenase, and peptidylprolyl isomerase B rather than angiotensin-converting enzyme 2 may explain the relatively high susceptibility of LUAD patients to SARS-CoV-2 infection. CTSB was highly expressed in the LUAD tissues after SARS-CoV-2 infection, and its expression was positively correlated with immune cell infiltration and proinflammatory cytokine expression. These findings suggest that CTSB plays a vital role in the hyperinflammatory response in COVID-19 patients with LUAD and is a promising target for the development of a novel drug therapy for COVID-19 patients.


Subject(s)
Adenocarcinoma of Lung/virology , COVID-19/genetics , Cathepsin B/genetics , Lung Neoplasms/virology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Angiotensin-Converting Enzyme 2/genetics , Animals , Basigin/genetics , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/mortality , Cricetinae , Cyclophilins/genetics , Cytokines/blood , Dipeptidyl Peptidase 4/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Minor Histocompatibility Antigens/genetics , Molecular Targeted Therapy , Prognosis , Protein Interaction Maps/genetics , Up-Regulation
19.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1585255

ABSTRACT

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , Network Pharmacology/methods , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction
20.
J Cell Mol Med ; 26(3): 709-724, 2022 02.
Article in English | MEDLINE | ID: covidwho-1583514

ABSTRACT

Growing evidence has shown that Transmembrane Serine Protease 2 (TMPRSS2) not only contributes to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but is also closely associated with the incidence and progression of tumours. However, the correlation of coronavirus disease (COVID-19) and cancers, and the prognostic value and molecular function of TMPRSS2 in various cancers have not been fully understood. In this study, the expression, genetic variations, correlated genes, immune infiltration and prognostic value of TMPRSS2 were analysed in many cancers using different bioinformatics platforms. The observed findings revealed that the expression of TMPRSS2 was considerably decreased in many tumour tissues. In the prognostic analysis, the expression of TMPRSS2 was considerably linked with the clinical consequences of the brain, blood, colorectal, breast, ovarian, lung and soft tissue cancer. In protein network analysis, we determined 27 proteins as protein partners of TMPRSS2, which can regulate the progression and prognosis of cancer mediated by TMPRSS2. Besides, a high level of TMPRSS2 was linked with immune cell infiltration in various cancers. Furthermore, according to the pathway analysis of differently expressed genes (DEGs) with TMPRSS2 in lung, breast, ovarian and colorectal cancer, 160 DEGs genes were found and were significantly enriched in respiratory system infection and tumour progression pathways. In conclusion, the findings of this study demonstrate that TMPRSS2 may be an effective biomarker and therapeutic target in various cancers in humans, and may also provide new directions for specific tumour patients to prevent SARS-CoV-2 infection during the COVID-19 outbreak.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Biomarkers/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL